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Hypothetical (?) scenarios

• The computer vision subsystem of an autonomous vehicle leads the vehicle to take
a left turn, in front of a car moving in the opposite direction¹

• The credit assessment system leads to the rejection of an application for a loan -
the client suspects racial bias²

• A model that assesses the risk of future criminal offenses (and used for decisions
on parole sentences) is biased against black prisoners³

¹https:
//www.theguardian.com/technology/2022/dec/22/tesla-crash-full-self-driving-mode-san-francisco

²https://www.technologyreview.com/2021/06/17/1026519/
racial-bias-noisy-data-credit-scores-mortgage-loans-fairness-machine-learning/

³https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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Questions

• Why did a model make a specific decision?
• What could we change so that the model will make a different decision?
• Can we summarize and predict the model’s behavior?

Today we focus on the last question

4 / 60



Taxonomy of interpretability methods

Figure: Timo Speith, “A Review of Taxonomies of Explainable Artificial Intelligence (XAI) Methods”. In 2022
ACM Conference on Fairness, Accountability, and Transparency (FAccT ’22), 2022 [8]
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Interpretable models (ante-hoc)

• Some models afford explanations
• interpretable-by-design

• Examples, (generalized) linear models, decision trees, k-NN
• Example: Linear regression

ŷ = w1x1 + . . .+ wpxp + b
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Interpretable models (ante-hoc)
• Result in the bike sharing dataset (model weights)

ŷ = w1x1 + . . .+ wpxp + b

Figure: C. Molnar, IML book, 2022 [7]
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Interpretable models (ante-hoc)
• Feature effects (visualization)

effect
(i)
j = wjx

(i)
j

Figure: C. Molnar, IML book, 2022 [7]
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Feature effect methods (1)

• Black-box model f(·) : X → Y , trained on D
• Goal:

• For single variable: Plot illustrating the effect of a feature xs on f for all values of xs

• For pairs of variables: Plot illustrating the effect of pair (xs, xl) on f for all values of
xs and xl

Feature Effect: global, model-agnostic, outputs plot

8 / 60



Feature Effect methods (2)
y = f(xs) → plot showing the effect of xs on the output y

Figure: C. Molnar, IML book, 2022 [7]

Feature Effect is simple and intuitive.
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Feature Effect Methods (3)

• xs → feature of interest, xc → other features
• How can we isolate xs?
• Difficult task:

• features are correlated
• f has learned complex interactions

10 / 60



PDP, MPlot and ALE

• PDP (Friedman, 2001) [3]
• f(xs) = Exc [f(xs,xc)]
• Unrealistic instances
• e.g. f(xage = 20, xyears_contraceptives = 20) = ??

• MPlot Apley & Zhu, 2020 [1]
• xc|xs: f(xs) = Exc|xs

[f(xs,xc)]
• Aggregated effects
• Real effect: xage = 20 → 10, xyears_contraceptives = 20 → 10
• MPlot may assign 17 to both

• ALE Apley & Zhu, 2020 [1]
• f(xs) =

∫ xs

xmin
Exc|z[

∂f
∂xs

(z,xc)]∂z
• Resolves both failure modes
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ALE approximation

ALE definition: f(xs) =
∫ xs

xs,min
Exc|z[

∂f
∂xs

(z,xc)]∂z

ALE approximation: f(xs) =
∑kx

k

1

|Sk|
∑

i:xi∈Sk

[f(zk,x
i
c)− f(zk−1,x

i
c)]︸ ︷︷ ︸

point effect︸ ︷︷ ︸
bin effect
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ALE approximation
ALE approximation: f(xs) =

∑kx
k

1

|Sk|
∑

i:xi∈Sk

[f(zk,x
i
c)− f(zk−1,x

i
c)]︸ ︷︷ ︸

point effect︸ ︷︷ ︸
bin effect

Figure: Image taken from Interpretable ML book [7]

Bin splitting (parameter K) is crucial!
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ALE approximation - weaknesses

f(xs) =

kx∑
k

1

|Sk|
∑

i:xi∈Sk

[f(zk,x
i
c)− f(zk−1,x

i
c)]︸ ︷︷ ︸

point effect︸ ︷︷ ︸
bin effect

• Point Effect ⇒ evaluation at bin limits
• 2 evaluations of f per point → slow
• change bin limits, pay again 2 ∗N evaluations of f → restrictive
• broad bins may create out of distribution (OOD) samples → not-robust in wide bins
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V. Gkolemis, T. Dalamagas and C. Diou, “DALE: Differential Accumulated Local Effects for
efficient and accurate global explanations”, ACML 2022 [4]

Work in collaboration with Vasilis Gkolemis (PhD student @ HUA) and Theodoros
Dalamagas (Researcher, ATHENA RC)



Our proposal: Differential ALE

f(xs) = ∆x

kx∑
k

1

|Sk|
∑

i:xi∈Sk

[
∂f

∂xs
(xis,x

i
c)]︸ ︷︷ ︸

point effect︸ ︷︷ ︸
bin effect

• Point Effect ⇒ evaluation on instances
• Fast → use of auto-differentiation, all derivatives in a single pass
• Versatile → point effects computed once, change bins without cost
• Secure → does not create artificial instances
• Unbiased estimator of ALE (bias / variance proofs in the paper and supporting
material)

For differentiable models, DALE resolves ALE weaknesses
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DALE is faster and more versatile - theory

f(xs) = ∆x

kx∑
k

1

|Sk|
∑

i:xi∈Sk

[
∂f

∂xs
(xis,x

i
c)]︸ ︷︷ ︸

point effect︸ ︷︷ ︸
bin effect

• Faster
• gradients wrt all features ∇xf(x

i) in a single pass (via the Jacobian)
• auto-differentiation must be available (deep learning)

• Versatile
• Change bin limits, with near zero computational cost

DALE is faster and allows redefintion of the bin limits
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DALE is faster and versatile - Experiments
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Figure: Light setup; small dataset (N = 102 instances), computationally light f . Heavy setup; big
dataset (N = 105 instances), computationally heavy f . D is the number of dimensions.

DALE considerably accelerates the estimation
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DALE uses on-distribution samples - Theory

f(xs) =

kx∑
k

1

|Sk|
∑

i:xi∈Sk

[
∂f

∂xs
(xis,x

i
c)]︸ ︷︷ ︸

point effect︸ ︷︷ ︸
bin effect

• point effect independent of bin limits
• ∂f

∂xs
(xi

s,x
i
c) computed on real instances x

i = (xi
s,x

i
c)

• bin limits affect only the resolution of the plot
• wide bins → low resolution plot, bin estimation from more points
• narrow bins → high resolution plot, bin estimation from less points

DALE enables wide bins without creating out of distribution instances
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DALE uses on-distribution samples - Experiments

f(x1, x2, x3) = x1x2 + x1x3 ± g(x)

x1 ∈ [0, 10], x2 ∼ x1 + ϵ, x3 ∼ N (0, σ2)

fALE(x1) =
x21
2

• point effects affected by (x1x3) (σ is
large)

• bin estimation is noisy (samples are
few)
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Intuition: we need wider bins (more samples per bin)
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DALE vs ALE - 40 Bins
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• DALE: on-distribution, noisy bin effect → poor estimation
• ALE: on-distribution, noisy bin effect → poor estimation
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DALE vs ALE - 40 Bins

20

10

0

10

20

30
y

DALE
ground truth
f

0 2 4 6 8 10
x1

0

10

20

y/
x 1

k

20

10

0

10

20

30

y

ALE
ground truth
f

0 2 4 6 8 10
x1

5

0

5

10

y/
x 1

k

• DALE: on-distribution, noisy bin effect → poor estimation
• ALE: on-distribution, noisy bin effect → poor estimation
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DALE vs ALE - 20 Bins
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• DALE: on-distribution, noisy bin effect → poor estimation
• ALE: on-distribution, noisy bin effect → poor estimation
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DALE vs ALE - 20 Bins
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• DALE: on-distribution, noisy bin effect → poor estimation
• ALE: on-distribution, noisy bin effect → poor estimation
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DALE vs ALE - 10 Bins

0 2 4 6 8 10
x1

0

2

4

6

8

10

x 2

f(x1, x2, x3 = 0)
samples
bins

1000

800

600

400

200

0

200

400

600

800

• DALE: on-distribution, noisy bin effect → poor estimation
• ALE: starts being OOD, noisy bin effect → poor estimation

23 / 60



DALE vs ALE - 10 Bins
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• DALE: on-distribution, noisy bin effect → poor estimation
• ALE: starts being OOD, noisy bin effect → poor estimation
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DALE vs ALE - 5 Bins
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• DALE: on-distribution, robust bin effect → good estimation
• ALE: completely OOD, robust bin effect → poor estimation
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DALE vs ALE - 5 Bins
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• DALE: on-distribution, robust bin effect → good estimation
• ALE: completely OOD, robust bin effect → poor estimation
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DALE vs ALE - 3 Bins
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• DALE: on-distribution, robust bin effect → good estimation
• ALE: completely OOD, robust bin effect → poor estimation
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DALE vs ALE - 3 Bins
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• DALE: on-distribution, robust bin effect → good estimation
• ALE: completely OOD, robust bin effect → poor estimation
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Real Dataset Experiments - Efficiency

• Bike-sharing dataset [2]
• y → daily bike rentals
• x : 10 features, most of them characteristics of the weather

Efficiency on Bike-Sharing Dataset (Execution Times in seconds)

Number of Features
1 2 3 4 5 6 7 8 9 10 11

DALE 1.17 1.19 1.22 1.24 1.27 1.30 1.36 1.32 1.33 1.37 1.39
ALE 0.85 1.78 2.69 3.66 4.64 5.64 6.85 7.73 8.86 9.9 10.9

DALE requires almost same time for all features
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Real Dataset Experiments - Accuracy
• Difficult to compare in real world datasets
• We do not know the ground-truth effect
• In most features, DALE and ALE agree.
• Only Xhour is an interesting feature
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Figure: (Left) DALE (Left) and ALE (Right) plots for K = {25, 50, 100}
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V. Gkolemis, T. Dalamagas, E. Ntoutsi and C. Diou, “RHALE: Robust and
Heterogeneity-aware Accumulated Local Effects ”, ECAI 2023 [5]

Work in collaboration with Vasilis Gkolemis (PhD student @ HUA), Theodoros Dalamagas
(Researcher, ATHENA RC) and Eirini Ntoutsi (Prof, Universität der Bundeswehr, München)



Next step: Heterogeneity and optimal bin selection

Using DALE, one has the computational margin to worry about additional issues:
• Computation of heterogeneity of local effects (i.e., standard error of the mean)
• Optimal selection of bins such that the effect does not have a high variation within
the bin

RHALE: Robust and Heterogeneity-aware Accumulated Local Effects
• Robust: Automatic bin splitting (result does not depend on arbitrary bin selection)
• Heterogeneity aware: ± from the average
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Example (based on Goldstein et al [6])

Aggregation bias
Y = 0.2X1 − 5X2 + 10X21X3>0 + E

E i.i.d.∼ N (0, 1), X1, X2, X3
i.i.d.∼ U(−1, 1)
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x2 ALE plot (20 bins) x2 ALE + heterogeneity (20 bins) x2 RHALE (auto-binning)
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Definitions and Approximations - Main effect

ALE main effect definition

fALE(xs) =

∫ xs

xs,min

EXc|Xs=z [f
s(z,Xc)]︸ ︷︷ ︸

µ(z)

∂z

ALE main effect approximation

f̂ALE(xs) = ∆x

kx∑
k

1

|Sk|
∑

i:xi∈Sk

[
∂f

∂xs
(xis,x

i
c)]︸ ︷︷ ︸

bin effect:µ̂(z)
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Simple but wrong: ALE + Heterogeneity
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Figure: Left: approximation with narrow bin-splitting (5 bins) and (Right) with dense-bin splitting

• Fixed-size bin splitting can ruin the estimation of the heterogeneity
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Definitions and Approximations - Heterogeneity

ALE heterogeneity definition

σ(xs) =

√√√√√
∫ xs

xs,min

EXc|Xs=z

[
(f s(z,Xc)− µ(z))2

]
∂z︸ ︷︷ ︸

σ2(z)

ALE heterogeneity approximation

STD(xs) =

√√√√√√√√
kx∑
k=1

(zk − zk−1)2
1

|Sk| − 1

∑
i:xi∈Sk

(
f s(xi)− µ̂(zk−1, zk)

)2
︸ ︷︷ ︸

ˆσ2(z)
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Derivations

In the paper we formally prove

1. the conditions under which the above definition is an unbiase estimator of the
heterogeneity

2. the conditions under which a bin splitting minimizes the estimator variance

Based on the above, we formulate bin-splitting as an optimization problem and propose
an efficient solution using dynamic programming.
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RHALE: Robust and Heterogeneity-aware ALE
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Figure: Variable bin size leads to improved
estimation

Simple but correct:
• Automatically finds the optimal
bin-splitting

• Optimal ⇒ best approximation of the
average (ALE) effect

• Optimal ⇒ best approximation of the
heterogeneity
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Impact

In case you work with a differentiable model, as in Deep Learning, use the combination
of DALE and RHALE to:

• compute ALE fast, for multiple bin sizes in one pass
• quantify the heterogeneity of the ALE plot, i.e., the deviation of the instance-level
effects from the average effect

• get a robust approximation of (a) the main ALE effect and (b) the heterogeneity,
using automatic bin-splitting

A python package will soon be released to provide these functionalities
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V. Gkolemis, A. Tzerefos, T. Dalamagas, E. Ntoutsi and C. Diou, “Regionally Additive
Models: Explainable-by-design models minimizing feature interactions”, Uncertainty
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After DALE & RHALE: Regional effects

• Similar to the way one can select optimal bin splits to minimize heterogeneity, one
can also identify optimal subregions of the features xc where the effect is
homogeneous

• Work in progress (also work by others)
• Also part of the soon-to-be-released python package
• In this final, brief part we will discuss something a little different, based on the
same idea
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Generalized Additive Models (GAMs)

Wikipedia says:
In statistics, a generalized additive model (GAM) is a generalized linear model in
which the response variable depends linearly on unknown smooth functions of
some predictor variables.
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Generalized Additive Models (GAMs)

Wikipedia says:
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Introductory Example

Output/target variable:
• ybike−rentals: the expected number of bike rentals per hour

Input/covariates:
• xtemperature: temperature per hour
• xhumidity: humidity per hour
• xis_weekday: if it is weekday or weekend

Let’s fit a GAM:

y = f1(xtemperature) + f2(xhumidity) + f3(xis_weekday)
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GAMs - Interpretability (1)

f1(xtemperature)
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GAMs - Interpretability (2)

f(xhumidity)
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GAMs - Interpretability (3)

f(xis_weekday)
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GAMs - Interpretability (4)

GAMs is explainable!
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GAMs - Limitations/Extensions

Limitations:

• temperature has different effect on week-days vs weekends
• Cause: go to work vs go sightseeing
• Solution 1: Add pairwise term f(xtemperature, xis_weekday)

• Solution 2: Model two conditional terms

• f(xtemperature|weekday)
• f(xtemperature|weekend)

Extensions:

• Solution 1: GA2M = GAM + pairwise interactions (Yin Lou et. al)
• Solution 2: RAM = GAM at subregions
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GAMs - Limitations/Extensions

Limitations:
• temperature has different effect on week-days vs weekends
• Cause: go to work vs go sightseeing
• Solution 1: Add pairwise term f(xtemperature, xis_weekday) Explainable
• Solution 2: Model two conditional terms

• f(xtemperature|weekday) Explainable
• f(xtemperature|weekend) Explainable

Extensions:
• Solution 1: GA2M = GAM + pairwise interactions (Yin Lou et. al)
• Solution 2: RAM = GAM at subregions
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RA(2)Ms go even beyond

GA2Ms Limitations:

• Have you ever ridden a bike in a cold day with humidity?
• If it is weekend, let’s see a movie instead!
• But if it is a workday? and bike is the only transport?
• model f(xtemperature, xhumidity, xis_weekday)?

RA(2)Ms solve that:

• f(xtemperature, xhumidity|xis_weekday) → RA2M

• f(xtemperature|xhumidity = {high, low}, xis_weekday) → RAM with two conditions
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GA2Ms Limitations:
• Have you ever ridden a bike in a cold day with humidity?
• If it is weekend, let’s see a movie instead!
• But if it is a workday? and bike is the only transport?
• model f(xtemperature, xhumidity, xis_weekday)? Not explainable

RA(2)Ms solve that:
• f(xtemperature, xhumidity|xis_weekday) → RA2M Explainable
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Explainable

48 / 60



RAM on toy example

f(x) = 8x21x1>01x3=0

x1, x2 ∼ U(−1, 1), x3 ∼ Bernoulli(0, 1)
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Figure: (Left) GAM, (Middle and Right) RAM
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How RAM works

3-step approach:

• Fit a black-box model to learn complex feature interactions
• it should be differentiable
• neural network is a good option

• Use a Regional Effect method to isolate the important interactions
• RHALE
• Feature Interactions - Herbinger et. al
• finds which features f(xi) should be split into subregions f(xi|xj ≶ τ)

• Fit a univariate function on each detected subregion
• learn all f(xi|xj ≶ τ)
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Step 1

• Fit a black-box model to capture all complex structures
• it should be differentiable
• A neural network is a good option
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Step 2

• Regional Effect method to find important interactions
• RHALE
• Feature Interactions - Herbinger et. al

• Idea:
• Feature effect is the average effect of each feature xs on the output y
• It is computed by averaging the instance-level effects
• Heterogeneity H (or uncertainty) measures the deviation of the instance-level effects
from the average effect

• we want to split the dataset in subgroups in order to minimize the heterogeneity

• In mathematical terms:

H(fi(xi))︸ ︷︷ ︸
H before split

>> H(fi(xi|xj > τ)) +H(fi(xi|xj ≤ τ))︸ ︷︷ ︸
sum of H after split
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Step 3

• Step 2 defines a new feature space X RAM

• Every feature is split to Ts subregions which are defined by Rst:

X RAM = {xst|s ∈ {1, . . . , D}, t ∈ {1, . . . , Ts}}

xst =

{
xs, if x/s ∈ Rst

0, otherwise

(1)

• Fit a univariate function on each subregion:

fRAM(x) = c+
∑
s,t

fst(xst) x ∈ X RAM (2)
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Bike Sharing dataset

Predict bike-rentals per hour
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Experimental Results

Tested on Bike Sharing and California Housing Datasets.

Black-box x-by-design
all orders 1st order 2ⁿd order

DNN GAM RAM GA2M RA2M
Bike (MAE) 0.254 0.549 0.430 0.298 0.278
Bike (RMSE) 0.389 0.734 0.563 0.438 0.412
Housing (MAE) 0.373 0.600 0.553 0.554 0.533
Housing (RMSE) 0.533 0.819 0.754 0.774 0.739

55 / 60

https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
https://inria.github.io/scikit-learn-mooc/python_scripts/datasets_california_housing.html


What is next?

• Results are preliminary
• Compare RAM vs GAM and RA2M vs GA2M in more datasets
• Check robustness on edge cases:

• highly correlated features
• limited training examples

• Can we model uncertainty?
• Uncertain because we do not model higher-order interactions
• Uncertain about the conditionals, i.e., detected subregions
• Uncertain about the univariate functions we learn

• Could we make it a 1-step process?
• a network that automatically learns both the univariate functions and the conditions
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Recap

• DALE can help with the computation of fast and accurate feature effect
explanations for differentiable models

• One can change the resolution of the explanation (i.e., number of bins K) for free
• RHALE can improve explanations by selecting variable bin splits, in an optimal way

• Unbiased estimation of heterogeneity
• Select optimal bin splits to minimize heterogeneity and improve the robustness of the
explanation

• Regionally Additive Models have the potential to improve the model accuracy, while
maintaining explainability

• Selection of optimal feature space subregions and fit a GAM
• Preliminary work, a lot to be done
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Thank you!
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