

New methods for global interpretability of differentiable machine learning models

Χρήστος Δίου / Christos Diou

Department of Informatics and Telematics Harokopio University of Athens

Ημερίδα: «Η Επιστήμη των Δεδομένων στη Διαδικασία Λήψης Αποφάσεων σε Αβέβαιο Περιβάλλον: Σύγχρονες Τάσεις και Εφαρμογές» Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών 11/12/2023

Contents

Introduction

Feature Effect

Differential Accumulated Local Effects (DALE)

RHALE: Robust and Heterogeneity-aware Accumulated Local Effects

Next step: Regionally Additive Models and Regional Effects

Hypothetical (?) scenarios

• The computer vision subsystem of an autonomous vehicle leads the vehicle to take a left turn, in front of a car moving in the opposite direction¹

¹https:

^{//}www.theguardian.com/technology/2022/dec/22/tesla-crash-full-self-driving-mode-san-francisco ²https://www.technologyreview.com/2021/06/17/1026519/

racial-bias-noisy-data-credit-scores-mortgage-loans-fairness-machine-learning/

³https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Hypothetical (?) scenarios

- The computer vision subsystem of an autonomous vehicle leads the vehicle to take a left turn, in front of a car moving in the opposite direction¹
- The credit assessment system leads to the rejection of an application for a loan the client suspects racial bias²

¹https:

^{//}www.theguardian.com/technology/2022/dec/22/tesla-crash-full-self-driving-mode-san-francisco ²https://www.technologyreview.com/2021/06/17/1026519/

racial-bias-noisy-data-credit-scores-mortgage-loans-fairness-machine-learning/

³https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Hypothetical (?) scenarios

- The computer vision subsystem of an autonomous vehicle leads the vehicle to take a left turn, in front of a car moving in the opposite direction¹
- The credit assessment system leads to the rejection of an application for a loan the client suspects racial bias²
- A model that assesses the risk of future criminal offenses (and used for decisions on parole sentences) is biased against black prisoners³

¹https:

^{//}www.theguardian.com/technology/2022/dec/22/tesla-crash-full-self-driving-mode-san-francisco ²https://www.technologyreview.com/2021/06/17/1026519/

racial-bias-noisy-data-credit-scores-mortgage-loans-fairness-machine-learning/

³https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Questions

- Why did a model make a specific decision?
- What could we change so that the model will make a different decision?
- Can we summarize and predict the model's behavior?

Today we focus on the last question

Taxonomy of interpretability methods

Figure: Timo Speith, "A Review of Taxonomies of Explainable Artificial Intelligence (XAI) Methods". In 2022 ACM Conference on Fairness, Accountability, and Transparency (FAccT '22), 2022 [8]

Contents

Introduction

Feature Effect

Differential Accumulated Local Effects (DALE)

RHALE: Robust and Heterogeneity-aware Accumulated Local Effects

Next step: Regionally Additive Models and Regional Effects

Interpretable models (ante-hoc)

- Some models afford explanations
 - interpretable-by-design
- Examples, (generalized) linear models, decision trees, k-NN
- Example: Linear regression

$$\hat{y} = w_1 x_1 + \ldots + w_p x_p + b$$

Interpretable models (ante-hoc)

• Result in the bike sharing dataset (model weights)

$$\hat{y} = w_1 x_1 + \ldots + w_p x_p + b$$

	Weight	SE	t
(Intercept)	2399.4	238.3	10.1
seasonSPRING	899.3	122.3	7.4
seasonSUMMER	138.2	161.7	0.9
seasonFALL	425.6	110.8	3.8
holidayHOLIDAY	-686.1	203.3	3.4
workingdayWORKING DAY	124.9	73.3	1.7
weathersitMISTY	-379.4	87.6	4.3
weathersitRAIN/SNOW/STORM	-1901.5	223.6	8.5
temp	110.7	7.0	15.7
hum	-17.4	3.2	5.5
windspeed	-42.5	6.9	6.2
days_since_2011	4.9	0.2	28.5

Figure: C. Molnar, IML book, 2022 [7]

Interpretable models (ante-hoc)

• Feature effects (visualization)

$$effect_j^{(i)} = w_j x_j^{(i)}$$

Figure: C. Molnar, IML book, 2022 [7]

Feature effect methods (1)

- Black-box model $f(\cdot): \mathcal{X} \to \mathcal{Y}$, trained on \mathcal{D}
- Goal:
 - For single variable: Plot illustrating the effect of a feature x_s on f for all values of x_s
 - For pairs of variables: Plot illustrating the effect of pair (x_s,x_l) on f for all values of x_s and x_l

Feature Effect: global, model-agnostic, outputs plot

Feature Effect methods (2)

 $y = f(x_s) \rightarrow \text{plot showing the effect of } x_s$ on the output y

Figure: C. Molnar, IML book, 2022 [7]

Feature Effect Methods (3)

- $x_s
 ightarrow$ feature of interest, $oldsymbol{x_c}
 ightarrow$ other features
- How can we isolate x_s ?
- Difficult task:
 - features are correlated
 - *f* has learned complex interactions

PDP, MPlot and ALE

- PDP (Friedman, 2001) [3]
 - $f(x_s) = \mathbb{E}_{\boldsymbol{x_c}}[f(x_s, \boldsymbol{x_c})]$
 - Unrealistic instances

• e.g.
$$f(x_{age} = 20, x_{years_contraceptives} = 20) = ??$$

PDP, MPlot and ALE

- PDP (Friedman, 2001) [3]
 - $f(x_s) = \mathbb{E}_{\boldsymbol{x_c}}[f(x_s, \boldsymbol{x_c})]$
 - Unrealistic instances
 - e.g. $f(x_{age} = 20, x_{years_contraceptives} = 20) = ??$
- MPlot Apley & Zhu, 2020 [1]
 - $\boldsymbol{x_c}|x_s: f(x_s) = \mathbb{E}_{\boldsymbol{x_c}|x_s}[f(x_s, \boldsymbol{x_c})]$
 - Aggregated effects
 - Real effect: $x_{age} = 20 \rightarrow 10$, $x_{years_contraceptives} = 20 \rightarrow 10$
 - MPlot may assign 17 to both

PDP, MPlot and ALE

- PDP (Friedman, 2001) [3]
 - $f(x_s) = \mathbb{E}_{\boldsymbol{x_c}}[f(x_s, \boldsymbol{x_c})]$
 - Unrealistic instances
 - e.g. $f(x_{age} = 20, x_{years_contraceptives} = 20) = ??$
- MPlot Apley & Zhu, 2020 [1]
 - $\boldsymbol{x_c}|x_s: f(x_s) = \mathbb{E}_{\boldsymbol{x_c}|x_s}[f(x_s, \boldsymbol{x_c})]$
 - Aggregated effects
 - Real effect: $x_{age} = 20 \rightarrow 10$, $x_{years_contraceptives} = 20 \rightarrow 10$
 - MPlot may assign 17 to both
- ALE Apley & Zhu, 2020 [1]
 - $f(x_s) = \int_{x_{min}}^{x_s} \mathbb{E}_{\boldsymbol{x_c}|z} [\frac{\partial f}{\partial x_s}(z, \boldsymbol{x_c})] \partial z$
 - Resolves both failure modes

ALE approximation

ALE definition:
$$f(x_s) = \int_{x_{s,min}}^{x_s} \mathbb{E}_{\boldsymbol{x_c}|z}[\frac{\partial f}{\partial x_s}(z, \boldsymbol{x_c})]\partial z$$

ALE approximation:
$$f(x_s) = \sum_{k=1}^{k_x} \underbrace{\frac{1}{|\mathcal{S}_k|} \sum_{i: x^i \in \mathcal{S}_k} \underbrace{[f(z_k, x_c^i) - f(z_{k-1}, x_c^i)]}_{\text{point effect}}}_{\text{bin effect}}$$

Figure: Image taken from Interpretable ML book [7]

Bin splitting (parameter *K*) is crucial!

ALE approximation - weaknesses

$$f(x_s) = \sum_{k}^{k_x} \underbrace{\frac{1}{|\mathcal{S}_k|} \sum_{i: x^i \in \mathcal{S}_k} \underbrace{[f(z_k, x_c^i) - f(z_{k-1}, x_c^i)]}_{\text{point effect}}}_{\text{bin effect}}$$

- Point Effect ⇒ evaluation at bin limits
 - 2 evaluations of f per point \rightarrow slow
 - change bin limits, pay again 2*N evaluations of $f \rightarrow$ restrictive
 - broad bins may create out of distribution (OOD) samples ightarrow not-robust in wide bins

Contents

Introduction

Feature Effect

Differential Accumulated Local Effects (DALE) Dale is faster and more versatile DALE is more Accurate

RHALE: Robust and Heterogeneity-aware Accumulated Local Effects

Next step: Regionally Additive Models and Regional Effects

V. Gkolemis, T. Dalamagas and C. Diou, "DALE: Differential Accumulated Local Effects for efficient and accurate global explanations", ACML 2022 [4]

Work in collaboration with Vasilis Gkolemis (PhD student @ HUA) and Theodoros Dalamagas (Researcher, ATHENA RC)

Our proposal: Differential ALE

- Point Effect \Rightarrow evaluation on instances
 - Fast \rightarrow use of auto-differentiation, all derivatives in a single pass
 - Versatile ightarrow point effects computed once, change bins without cost
 - Secure \rightarrow does not create artificial instances
 - Unbiased estimator of ALE (bias / variance proofs in the paper and supporting material)

For differentiable models, DALE resolves ALE weaknesses

DALE is faster and more versatile - theory

- Faster
 - gradients wrt all features $abla_{m{x}} f(m{x^i})$ in a single pass (via the Jacobian)
 - auto-differentiation must be available (deep learning)
- Versatile
 - Change bin limits, with near zero computational cost
- DALE is faster and allows redefintion of the bin limits

DALE is faster and versatile - Experiments

DALE vs ALE: Heavy setup

Figure: Light setup; small dataset ($N = 10^2$ instances), computationally light f. Heavy setup; big dataset ($N = 10^5$ instances), computationally heavy f. D is the number of dimensions.

DALE considerably accelerates the estimation

DALE uses on-distribution samples - Theory

- point effect independent of bin limits
 - $\frac{\partial f}{\partial x_s}(x^i_s, x^i_c)$ computed on real instances $x^i = (x^i_s, x^i_c)$
- bin limits affect only the resolution of the plot
 - wide bins ightarrow low resolution plot, bin estimation from more points
 - narrow bins ightarrow high resolution plot, bin estimation from less points

DALE enables wide bins without creating out of distribution instances

DALE uses on-distribution samples - Experiments

$$f(x_1, x_2, x_3) = x_1 x_2 + x_1 x_3 \pm g(x)$$
$$x_1 \in [0, 10], x_2 \sim x_1 + \epsilon, x_3 \sim \mathcal{N}(0, \sigma^2)$$
$$f_{ALE}(x_1) = \frac{x_1^2}{2}$$

- point effects affected by (x_1x_3) (σ is large)
- bin estimation is noisy (samples are few)

Intuition: we need wider bins (more samples per bin)

DALE vs ALE - 40 Bins

- DALE: on-distribution, noisy bin effect \rightarrow poor estimation
- ALE: on-distribution, noisy bin effect \rightarrow poor estimation

DALE vs ALE - 40 Bins

- DALE: on-distribution, noisy bin effect \rightarrow poor estimation
- ALE: on-distribution, noisy bin effect \rightarrow poor estimation

DALE vs ALE - 20 Bins

- DALE: on-distribution, noisy bin effect \rightarrow poor estimation
- ALE: on-distribution, noisy bin effect \rightarrow poor estimation

DALE vs ALE - 20 Bins

- DALE: on-distribution, noisy bin effect \rightarrow poor estimation
- ALE: on-distribution, noisy bin effect \rightarrow poor estimation

DALE vs ALE - 10 Bins

- DALE: on-distribution, noisy bin effect \rightarrow poor estimation
- ALE: starts being OOD, noisy bin effect \rightarrow poor estimation

DALE vs ALE - 10 Bins

- DALE: on-distribution, noisy bin effect \rightarrow poor estimation
- ALE: starts being OOD, noisy bin effect \rightarrow poor estimation

DALE vs ALE - 5 Bins

- DALE: on-distribution, robust bin effect \rightarrow good estimation
- ALE: completely OOD, robust bin effect \rightarrow poor estimation

DALE vs ALE - 5 Bins

- DALE: on-distribution, robust bin effect \rightarrow good estimation
- ALE: completely OOD, robust bin effect \rightarrow poor estimation

DALE vs ALE - 3 Bins

- DALE: on-distribution, robust bin effect \rightarrow good estimation
- ALE: completely OOD, robust bin effect \rightarrow poor estimation
DALE vs ALE - 3 Bins

- DALE: on-distribution, robust bin effect \rightarrow good estimation
- ALE: completely OOD, robust bin effect \rightarrow poor estimation

Real Dataset Experiments - Efficiency

- Bike-sharing dataset [2]
- $y \rightarrow \text{daily bike rentals}$
- x: 10 features, most of them characteristics of the weather

	Number of Features										
	1	2	3	4	5	6	7	8	9	10	11
DALE	1.17	1.19	1.22	1.24	1.27	1.30	1.36	1.32	1.33	1.37	1.39
ALE	0.85	1.78	2.69	3.66	4.64	5.64	6.85	7.73	8.86	9.9	10.9

Efficiency on Bike-Sharing Dataset (Execution Times in seconds)

DALE requires almost same time for all features

Real Dataset Experiments - Accuracy

- Difficult to compare in real world datasets
- We do not know the ground-truth effect
- In most features, DALE and ALE agree.
- Only X_{hour} is an interesting feature

Figure: (Left) DALE (Left) and ALE (Right) plots for $K = \{25, 50, 100\}$

Contents

Introduction

Feature Effect

Differential Accumulated Local Effects (DALE)

RHALE: Robust and Heterogeneity-aware Accumulated Local Effects

Next step: Regionally Additive Models and Regional Effects

V. Gkolemis, T. Dalamagas, E. Ntoutsi and C. Diou, "RHALE: Robust and Heterogeneity-aware Accumulated Local Effects ", ECAI 2023 [5]

Work in collaboration with Vasilis Gkolemis (PhD student @ HUA), Theodoros Dalamagas (Researcher, ATHENA RC) and Eirini Ntoutsi (Prof, Universität der Bundeswehr, München)

Next step: Heterogeneity and optimal bin selection

Using DALE, one has the computational margin to worry about additional issues:

- Computation of heterogeneity of local effects (i.e., standard error of the mean)
- Optimal selection of bins such that the effect does not have a high variation within the bin
- RHALE: Robust and Heterogeneity-aware Accumulated Local Effects
 - Robust: Automatic bin splitting (result does not depend on arbitrary bin selection)
 - Heterogeneity aware: \pm from the average

Example (based on Goldstein et al [6])

Aggregation bias

$$Y = 0.2X_1 - 5X_2 + 10X_2 \mathbb{1}_{X_3 > 0} + \mathcal{E}$$

$$\mathcal{E} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1), \quad X_1, X_2, X_3 \stackrel{i.i.d.}{\sim} \mathcal{U}(-1, 1)$$

Definitions and Approximations - Main effect

ALE main effect definition

$$f^{\text{ALE}}(x_s) = \int_{x_{s,\min}}^{x_s} \underbrace{\mathbb{E}_{X_c \mid X_s = z} \left[f^s(z, X_c) \right]}_{\mu(z)} \partial z$$

ALE main effect approximation

$$\hat{f}^{\text{ALE}}(x_s) = \Delta x \sum_{k}^{k_x} \underbrace{\frac{1}{|\mathcal{S}_k|} \sum_{i: \boldsymbol{x}^i \in \mathcal{S}_k} [\frac{\partial f}{\partial x_s}(x_s^i, \boldsymbol{x}_c^i)]}_{\text{bin effect}: \hat{\boldsymbol{\mu}}(z)}$$

Simple but wrong: ALE + Heterogeneity

Figure: Left: approximation with narrow bin-splitting (5 bins) and (Right) with dense-bin splitting

• Fixed-size bin splitting can ruin the estimation of the heterogeneity

Definitions and Approximations - Heterogeneity

ALE heterogeneity definition

$$\sigma(x_s) = \sqrt{\int_{x_{s,\min}}^{x_s} \underbrace{\mathbb{E}_{X_c|X_s=z}\left[\left(f^s(z,X_c) - \mu(z)\right)^2\right] \partial z}_{\sigma^2(z)}}$$

ALE heterogeneity approximation

$$STD(x_s) = \sqrt{\sum_{k=1}^{k_x} (z_k - z_{k-1})^2 \underbrace{\frac{1}{|\mathcal{S}_k| - 1} \sum_{i: \mathbf{x}^i \in \mathcal{S}_k} \left(f^s(\mathbf{x}^i) - \hat{\mu}(z_{k-1}, z_k)\right)^2}_{\sigma^2(z)}}_{\sigma^2(z)}$$

Derivations

In the paper we formally prove

- 1. the conditions under which the above definition is an unbiase estimator of the heterogeneity
- 2. the conditions under which a bin splitting minimizes the estimator variance

Based on the above, we formulate bin-splitting as an optimization problem and propose an efficient solution using dynamic programming.

RHALE: Robust and Heterogeneity-aware ALE

Figure: Variable bin size leads to improved estimation

Simple but correct:

- Automatically finds the **optimal** bin-splitting
- Optimal ⇒ best approximation of the average (ALE) effect
- Optimal ⇒ best approximation of the heterogeneity

Impact

In case you work with a differentiable model, as in Deep Learning, use the combination of DALE and RHALE to:

- compute ALE fast, for multiple bin sizes in one pass
- quantify the heterogeneity of the ALE plot, i.e., the deviation of the instance-level effects from the average effect
- get a robust approximation of (a) the main ALE effect and (b) the heterogeneity, using automatic bin-splitting

A python package will soon be released to provide these functionalities

Contents

Introduction

Feature Effect

Differential Accumulated Local Effects (DALE)

RHALE: Robust and Heterogeneity-aware Accumulated Local Effects

Next step: Regionally Additive Models and Regional Effects

V. Gkolemis, A. Tzerefos, T. Dalamagas, E. Ntoutsi and C. Diou, "Regionally Additive Models: Explainable-by-design models minimizing feature interactions", Uncertainty meets Explainability workshop, ECML 2023 https://xai-uncertainty.github.jo

Work in collaboration with Vasilis Gkolemis (PhD student @ HUA), Anargiros Tzerefos, Theodoros Dalamagas (Researcher, ATHENA RC) and Eirini Ntoutsi (Prof, Universität der Bundeswehr, München)

After DALE & RHALE: Regional effects

- Similar to the way one can select optimal bin splits to minimize heterogeneity, one can also identify optimal subregions of the features x_c where the effect is homogeneous
- Work in progress (also work by others)
- Also part of the soon-to-be-released python package
- In this final, brief part we will discuss something a little different, based on the same idea

Wikipedia says:

In statistics, a generalized additive model (GAM) is a generalized linear model in which the response variable depends linearly on unknown smooth functions of some predictor variables.

Wikipedia says:

In statistics, a generalized additive model (GAM) is a generalized linear model in which the response variable depends linearly on unknown smooth functions of some predictor variables.

y

Wikipedia says:

In statistics, a generalized additive model (GAM) is a generalized linear model in which the response variable depends linearly on unknown smooth functions of some predictor variables.

 $y = \cdot + \ldots + \cdot$

Wikipedia says:

In statistics, a generalized additive model (GAM) is a generalized linear model in which the response variable depends linearly on unknown smooth functions of some predictor variables.

 $\boldsymbol{y} = f_1(\boldsymbol{x}_1) + \ldots + f_D(\boldsymbol{x}_D)$

Introductory Example

Output/target variable:

• $y_{bike-rentals}$: the expected number of bike rentals per hour Input/covariates:

- $x_{temperature}$: temperature per hour
- x_{humidity} : humidity per hour

• $x_{is_weekday}$: if it is weekday or weekend Let's fit a GAM:

$$y = f_1(x_{\texttt{temperature}}) + f_2(x_{\texttt{humidity}}) + f_3(x_{\texttt{is_weekday}})$$

GAMs - Interpretability (1)

 $f_1(x_{\texttt{temperature}})$

GAMs - Interpretability (2)

 $f(x_{\texttt{humidity}})$

GAMs - Interpretability (3)

GAMs - Interpretability (4)

GAMs is explainable!

Limitations:

Limitations:

• temperature has different effect on week-days vs weekends

Limitations:

- temperature has different effect on week-days vs weekends
- Cause: go to work vs go sightseeing

Limitations:

- temperature has different effect on week-days vs weekends
- Cause: go to work vs go sightseeing
- Solution 1: Add pairwise term $f(x_{\texttt{temperature}}, x_{\texttt{is_weekday}})$

Limitations:

- temperature has different effect on week-days vs weekends
- Cause: go to work vs go sightseeing
- Solution 1: Add pairwise term $f(x_{\texttt{temperature}}, x_{\texttt{is_weekday}})$
- Solution 2: Model two conditional terms
 - $f(x_{temperature} | weekday)$
 - $f(x_{\texttt{temperature}}|weekend)$

Limitations:

- temperature has different effect on week-days vs weekends
- Cause: go to work vs go sightseeing
- Solution 1: Add pairwise term $f(x_{\texttt{temperature}}, x_{\texttt{is_weekday}})$
- Solution 2: Model two conditional terms
 - $f(x_{\texttt{temperature}} | weekday)$
 - $f(x_{\texttt{temperature}}|weekend)$

Extensions:

• Solution 1: $GA^2M = \text{GAM} + \text{pairwise interactions (Yin Lou et. al)}$

Limitations:

- temperature has different effect on week-days vs weekends
- Cause: go to work vs go sightseeing
- Solution 1: Add pairwise term $f(x_{\texttt{temperature}}, x_{\texttt{is_weekday}})$
- Solution 2: Model two conditional terms
 - $f(x_{\texttt{temperature}} | weekday)$
 - $f(x_{\texttt{temperature}} | weekend)$

- Solution 1: $GA^2M = \text{GAM} + \text{pairwise interactions (Yin Lou et. al)}$
- Solution 2: RAM = GAM at subregions

Limitations:

- temperature has different effect on week-days vs weekends
- Cause: go to work vs go sightseeing
- Solution 1: Add pairwise term $f(x_{temperature}, x_{is_weekday})$ Explainable
- Solution 2: Model two conditional terms
 - $f(x_{temperature} | weekday)$ Explainable
 - $f(x_{temperature} | weekend)$ Explainable

- Solution 1: $GA^2M = GAM$ + pairwise interactions (Yin Lou et. al)
- Solution 2: RAM = GAM at subregions

$RA^{(2)}Ms$ go even beyond

 GA^2Ms Limitations:

 $RA^{(2)}Ms$ solve that:

$R\!A^{(2)}Ms$ go even beyond

 GA^2Ms Limitations:

• Have you ever ridden a bike in a cold day with humidity?

 $RA^{(2)}Ms$ solve that:

$R\!A^{(2)}Ms$ go even beyond

 GA^2Ms Limitations:

- Have you ever ridden a bike in a cold day with humidity?
- If it is weekend, let's see a movie instead!

 $RA^{(2)}Ms$ solve that:
$R\!A^{(2)}Ms$ go even beyond

 GA^2Ms Limitations:

- Have you ever ridden a bike in a cold day with humidity?
- If it is weekend, let's see a movie instead!
- But if it is a workday? and bike is the only transport?

 $RA^{(2)}Ms$ solve that:

$R\!A^{(2)}Ms$ go even beyond

 GA^2Ms Limitations:

- Have you ever ridden a bike in a cold day with humidity?
- If it is weekend, let's see a movie instead!
- But if it is a workday? and bike is the only transport?
- model $f(x_{temperature}, x_{humidity}, x_{is_weekday})$?

 $RA^{(2)}Ms$ solve that:

$RA^{(2)}Ms$ go even beyond

 GA^2Ms Limitations:

- Have you ever ridden a bike in a cold day with humidity?
- If it is weekend, let's see a movie instead!
- But if it is a workday? and bike is the only transport?
- model $f(x_{temperature}, x_{humidity}, x_{is_weekday})$? Not explainable $RA^{(2)}Ms$ solve that:

$RA^{(2)}Ms$ go even beyond

 GA^2Ms Limitations:

- Have you ever ridden a bike in a cold day with humidity?
- If it is weekend, let's see a movie instead!
- But if it is a workday? and bike is the only transport?

• model $f(x_{temperature}, x_{humidity}, x_{is_weekday})$? Not explainable $RA^{(2)}Ms$ solve that:

• $f(x_{\texttt{temperature}}, x_{\texttt{humidity}} | x_{\texttt{is_weekday}}) \rightarrow RA^2M$

$R\!A^{(2)}Ms$ go even beyond

 GA^2Ms Limitations:

- Have you ever ridden a bike in a cold day with humidity?
- If it is weekend, let's see a movie instead!
- But if it is a workday? and bike is the only transport?

• model $f(x_{temperature}, x_{humidity}, x_{is_weekday})$? Not explainable $RA^{(2)}Ms$ solve that:

- $f(x_{\texttt{temperature}}, x_{\texttt{humidity}} | x_{\texttt{is_weekday}}) \rightarrow RA^2M$
- $f(x_{\texttt{temperature}}|x_{\texttt{humidity}} = \{high, low\}, x_{\texttt{is_weekday}}) \rightarrow \texttt{RAM} \text{ with two conditions}$

$RA^{(2)}Ms$ go even beyond

 GA^2Ms Limitations:

- Have you ever ridden a bike in a cold day with humidity?
- If it is weekend, let's see a movie instead!
- But if it is a workday? and bike is the only transport?
- model $f(x_{temperature}, x_{humidity}, x_{is_weekday})$? Not explainable $RA^{(2)}Ms$ solve that:
 - $f(x_{\texttt{temperature}}, x_{\texttt{humidity}} | x_{\texttt{is_weekday}}) \rightarrow RA^2M$ Explainable
 - $f(x_{temperature} | x_{humidity} = \{high, low\}, x_{is_weekday}) \rightarrow RAM$ with two conditions Explainable

RAM on toy example

$$f(\boldsymbol{x}) = 8x_2 \mathbb{1}_{x_1 > 0} \mathbb{1}_{x_3 = 0}$$

$$x_1, x_2 \sim \mathcal{U}(-1, 1), x_3 \sim Bernoulli(0, 1)$$

Figure: (Left) GAM, (Middle and Right) RAM

- Fit a black-box model to learn complex feature interactions
 - it should be differentiable
 - neural network is a good option

- Fit a black-box model to learn complex feature interactions
 - it should be differentiable
 - neural network is a good option
- Use a Regional Effect method to isolate the important interactions
 - RHALE
 - Feature Interactions Herbinger et. al
 - finds which features $f(x_i)$ should be split into subregions $f(x_i|x_j \leq \tau)$

- Fit a black-box model to learn complex feature interactions
 - it should be differentiable
 - neural network is a good option
- Use a Regional Effect method to isolate the important interactions
 - RHALE
 - Feature Interactions Herbinger et. al
 - finds which features $f(x_i)$ should be split into subregions $f(x_i|x_j \leq \tau)$
- Fit a univariate function on each detected subregion
 - learn all $f(x_i|x_j \leq \tau)$

Step 1

- Fit a black-box model to capture all complex structures
 - it should be differentiable
 - A neural network is a good option

Step 2

- Regional Effect method to find important interactions
 - RHALE
 - Feature Interactions Herbinger et. al
- Idea:
 - Feature effect is the average effect of each feature x_s on the output y
 - It is computed by averaging the instance-level effects
 - Heterogeneity ${\cal H}$ (or uncertainty) measures the deviation of the instance-level effects from the average effect
 - we want to split the dataset in subgroups in order to minimize the heterogeneity
- In mathematical terms:

$$\underbrace{\mathcal{H}(f_i(x_i))}_{} >> \underbrace{\mathcal{H}(f_i(x_i|x_j > \tau)) + \mathcal{H}(f_i(x_i|x_j \le \tau))}_{}$$

 ${\mathcal H}$ before split

sum of ${\mathcal H}$ after split

Step 3

- Step 2 defines a new feature space \mathcal{X}^{RAM}
- Every feature is split to T_s subregions which are defined by \mathcal{R}_{st} :

$$\begin{aligned} \mathcal{X}^{\text{RAM}} &= \{ x_{st} | s \in \{1, \dots, D\}, t \in \{1, \dots, T_s\} \} \\ x_{st} &= \begin{cases} x_s, & \text{if } \mathbf{x}_{/\mathbf{s}} \in \mathcal{R}_{st} \\ 0, & \text{otherwise} \end{cases} \end{aligned}$$
(1)

• Fit a univariate function on each subregion:

$$f^{\text{RAM}}(\mathbf{x}) = c + \sum_{s,t} f_{st}(x_{st}) \quad \mathbf{x} \in \mathcal{X}^{\text{RAM}}$$
(2)

Bike Sharing dataset

Predict bike-rentals per hour

Experimental Results

Tested on Bike Sharing and California Housing Datasets.

	Black-box	x-by-design			
	all orders	1 st order		2 nd order	
	DNN	GAM	RAM	GA ² M	RA ² M
Bike (MAE)	0.254	0.549	0.430	0.298	0.278
Bike (RMSE)	0.389	0.734	0.563	0.438	0.412
Housing (MAE)	0.373	0.600	0.553	0.554	0.533
Housing (RMSE)	0.533	0.819	0.754	0.774	0.739

What is next?

- Results are preliminary
 - Compare RAM vs GAM and RA^2M vs GA^2M in more datasets
 - Check robustness on edge cases:
 - highly correlated features
 - limited training examples
- Can we model uncertainty?
 - Uncertain because we do not model higher-order interactions
 - Uncertain about the conditionals, i.e., detected subregions
 - Uncertain about the univariate functions we learn
- Could we make it a 1-step process?
 - a network that automatically learns both the univariate functions and the conditions

Recap

- DALE can help with the computation of fast and accurate feature effect explanations for differentiable models
 - One can change the resolution of the explanation (i.e., number of bins K) for free
- RHALE can improve explanations by selecting variable bin splits, in an optimal way
 - Unbiased estimation of heterogeneity
 - Select optimal bin splits to minimize heterogeneity and improve the robustness of the explanation
- Regionally Additive Models have the potential to improve the model accuracy, while maintaining explainability
 - Selection of optimal feature space subregions and fit a GAM
 - Preliminary work, a lot to be done

Thank you!

References I

- Daniel W. Apley and Jingyu Zhu. "Visualizing the effects of predictor variables in black box supervised learning models". In: *Journal of the Royal Statistical Society. Series B: Statistical Methodology* 82.4 (2020), pp. 1059–1086. ISSN: 14679868. DOI: 10.1111/rssb.12377. arXiv: 1612.08468.
- [2] Hadi Fanaee-T and Joao Gama. "Event labeling combining ensemble detectors and background knowledge". In: Progress in Artificial Intelligence (2013), pp. 1–15. ISSN: 2192-6352. DOI: 10.1007/s13748-013-0040-3. URL: [WebLink].
- Jerome H. Friedman. "Greedy function approximation: A gradient boosting machine". In: Annals of Statistics 29.5 (2001), pp. 1189–1232. ISSN: 00905364. DOI: 10.1214/aos/1013203451.
- [4] Vasilis Gkolemis, Theodore Dalamagas, and Christos Diou. "DALE: Differential Accumulated Local Effects for efficient and accurate global explanations". In: Asian Conference on Machine Learning. PMLR. 2023, pp. 375–390.

References II

- [5] Vasilis Gkolemis et al. "RHALE: Robust and heterogeneity-aware accumulated local effects". In: (2023).
- [6] Alex Goldstein et al. "Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation". In: *journal of Computational and Graphical Statistics* 24.1 (2015), pp. 44–65.
- [7] Christoph Molnar. Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. 2nd ed. 2022. URL: https://christophm.github.io/interpretable-ml-book.
- [8] Timo Speith. "A review of taxonomies of explainable artificial intelligence (XAI) methods". In: *Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency*. 2022, pp. 2239–2250.